Part Number Hot Search : 
D214I ATXMEGA2 TDA5241 D74LV2 SMBJ51 480T0 4066D HR433
Product Description
Full Text Search
 

To Download SL28EB742 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  preliminary rev. 0.1 5/12 copyright ? 2012 by silicon laboratories SL28EB742 this information applies to a product under dev elopment. its characteristics and specifications are s ubject to change without n otice. SL28EB742 i ntel ? c edarview e mbedded c lock g enerator features description the SL28EB742 is a high-performance clock generator for supporting intel cedarview platforms. the SL28EB742 is rated to support extended grade temperature. utilizing an inex pensive 14.318 mhz crystal, it is capable of supporting multiple frequencies from four plls. the cpu clock can support a frequency range from 83.33 to 166 mhz by configuration of two strap pins. with a combination of strap pins and an i 2 c, the device allows maximum configurability. ?? low power push-pull type differential output buffers ?? no termination resistors required on differential clocks ?? 3-bits slew rate control on single- ended clocks ?? differential cpu clocks with pins selectable frequency ?? 100 mhz differential src clocks ?? selectable differential sata or src clock ?? 96 mhz differential dot clock ?? 48 mhz usb clock ?? selectable 12 or 48 mhz clock ?? 25 mhz clock ?? buffered reference clock 14.318 mhz ?? 14.318 mhz crystal input or clock input ?? i 2 c support with readback capabilities ?? triangular spread spectrum profile for maximum electromagnetic interference (emi) reduction ?? extended temperature: ?40 to 85 c ?? 3.3 v power supply ?? 56-pin qfn package selectable differential src or cpu clock cpu cpu/ src src sata/ src dot96 48m 48m/ 12m 33m 25m 14.318m x2 x1 x5 x 1 x1 x1/2 x1 x2 x1 x1 patents pending ordering information: see page 37 pin assignments SL28EB742 pcif/itp_en 2 clkreq3 2 12m_48m/sel 12_48 1 vdd_48 gnd_48 48m/fsa 2 notes: 1. internal 100 kohm pull-up. 2. internal 100 kohm pull-down. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 42 41 40 39 38 37 36 35 34 33 32 31 30 29 56 55 54 53 52 51 50 49 48 47 46 45 44 43 gnd_48 dot96 dot96 fsb 2 gnd_sata sata/src0 sata/src0 vdd_sata src1 src1 src2 src2 src3 src3 gnd_src vdd_src src4 src4 src5 src5 vss_src vdd_src xin/clkin xout pci/src_stp 1 cpu_stp 1 sdata sclk gnd_cpu cpu0 cpu0 vdd_cpu cpu1 cpu1 cpu2/src6 cpu2/src6 vdd_pci gnd_pci pci0/sel_sata 2 clkreq2 2 clkreq1 2 gnd_25 25m / fsc 2 vdd_25 ckpwrgd/pd vdd_ref vdd_ref ref gnd_ref gnd_ref
SL28EB742 2 preliminary rev. 0.1 functional block diagram crystal/ clkin pll 1 (ssc) logic core vr pll 4 (non-ssc) pll 3 (non-ssc) divider divider divider sclk sdata ref cpu [1:0] pci clkpwrgd/ pd cpu_stp fs [ c:a] xin xout 48m pll 2 (non-ssc) divider src [5:1] sata/src0 dot96 12/48m 25m pci/src_stp clkreq[3:1] itp_en sel_sata sel_12_48 cpu2/src6 pcif
SL28EB742 preliminary rev. 0.1 3 t able of c ontents section page 1. electrical specificat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.1. powerdown (pd ) clarification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.2. powerdown (pd ) assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.3. powerdown (pd ) deassertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.4. cpu_stp assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5. cpu_stp deassertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6. pci/ src_stp assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.7. pci/ src_stp deassertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3. test and measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1. single-ended clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 3.2. differential clock signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 4. control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 4.1. frequency select pin fs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 4.2. i 2 c interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3. data protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5. pin descriptions: 56-pin qfn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6. ordering guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7. package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 contact information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
SL28EB742 4 preliminary rev. 0.1 1. electrical specifications table 1. recommended operating conditions (vdd = 3.3 v, t a =25c) parameter symbol test co ndition min typ max unit supply voltage (extended) vdd (extended) 3.3 v 5% 3.13 3.3 3.46 v supply voltage (commercial) vdd (commercial) 3.3 v 10% 2.97 3.3 3.63 v table 2. dc electrical specifications parameter symbol test condition min max unit 3.3 v input high voltage (se) v ih 2.0 v dd + 0.3 v 3.3 v input low voltage (se) v il v ss ? 0.3 0.8 v input high voltage v ihi2c sdata, sclk 2.2 ? v input low voltage v ili2c sdata, sclk ? 1.0 v fs input high voltage v ih_fs 0.7 v dd + 0.3 v fs input low voltage v il_fs v ss ? 0.3 0.35 v input high leakage current i ih except internal pull-down resistors, 0 < v in < v dd ?5a input low leakage current i il except internal pull-up resistors, 0 < v in < v dd ?5 ? a 3.3 v output high voltage (se) v oh i oh = ?1 ma 2.4 ? v 3.3 v output low voltage (se) v ol i ol = 1 ma h 0.4 v high-impedance output current i oz ?10 10 a input pin capacitance c in 1.5 5 pf output pin capacitance c out 6pf pin inductance l in ?7nh power down current idd_ pd ?1ma dynamic supply current i dd_3.3 v all outputs enabled. se clocks with 5? traces and 4 pf load. differential clocks with 5? traces and 2 pf load. ?120ma
SL28EB742 preliminary rev. 0.1 5 table 3. ac electrical specifications parameter symbol condition min max unit crystal long-term accuracy l acc measured at v dd /2 differential ? 250 ppm clock input clkin duty cycle t dc measured at vv dd /2 47 53 % clkin rising/fallin g slew rate t r /t f measured between 0.2 v dd and 0.8 v dd 0.5 4.0 v/ns clkin cycle to cycle jitter t ccj measured at v dd /2 ? 250 ps clkin long term jitter t ltj measured at v dd 2?350ps input high voltage v ih xin / clkin pin 2 v dd +0.3 v input low voltage v il xin / clkin pin ? 0.8 v input high current i ih xin / clkin pin, vin = v dd ?35a input low current i il xin / clkin pin, 0 < vin <0.8 -35 ? a cpu at 0.7 v duty cycle t dc measured at 0 v differential 45 55 % cycle to cycle jitter t ccj measured at 0 v differential ? 85 ps cycle to cycle jitter for cpu 2 t ccj (cpu2) measured at 0 v differential ? 125 ps cpu0 to cpu1 skew t skew measured at 0 v differential ? 100 ps long-term accuracy l acc measured at 0 v differential ? 100 ppm rising/falling slew rate t r / t f measured differentially from 150 mv 2.5 8 v/ns rise/fall matching t rfm measured single-endedly from 75 mv ? 20 % voltage high v high 1.15 v voltage low v low ?0.3 ? v crossing point voltage at 0.7 v swing v ox 300 550 mv src at 0.7 v duty cycle t dc measured at 0 v differential 45 55 % any src clock skew from the earliest bank to the latest bank t skew measured at 0 v differential ? 3.0 ns cycle to cycle jitter t ccj measured at 0 v differential ? 85 ps long term accuracy l acc measured at 0 v differential ? 100 ppm rising/falling slew rate t r / t f measured differentially from 150 mv 2.5 8 v/ns rise/fall matching t rfm measured single-endedly from 75 mv ? 20 % voltage high v high 1.15 v
SL28EB742 6 preliminary rev. 0.1 voltage low v low ?0.3 ? v crossing point voltage at 0.7 v swing v ox 300 550 mv dot96 at 0.7 v duty cycle t dc measured at 0 v differential 45 55 % cycle to cycle jitter t ccj measured at 0 v differential at 1 clock ? 250 ps long term accuracy l acc measured at 0 v differential at 1 clock ? 100 ppm rising/falling slew rate t r / t f measured differentially from 150 mv 2.5 8 v/ns rise/fall matching t rfm measured single-endedly from 75 mv ? 20 % voltage high v high 1.15 v voltage low v low ?0.3 ? v crossing point voltage at 0.7 v swing v ox 300 550 mv sata at 0.7 v duty cycle t dc measured at 0 v differential 45 55 % cycle to cycle jitter t ccj measured at 0 v differential at 1 clock ? 125 ps long term accuracy l acc measured at 0 v differential at 1 clock ? 100 ppm rising/falling slew rate t r / t f measured differentially from 150 mv 2.5 8 v/ns rise/fall matching t rfm measured single-endedly from 75 mv ? 20 % voltage high v high 1.15 v voltage low v low ?0.3 ? v crossing point voltage at 0.7 v swing v ox 300 550 mv pci/pcif at 3.3 v duty cycle t dc measurement at 1.5 v 45 55 % rising/falling slew rate t r / t f measured between 0.8 v and 2.0 v 1.0 4.0 v/ns any pci clock to any pci clock skew t skew measurement at 1.5v ? 1000 ps 48m, 12_48m at 3.3 v duty cycle t dc measurement at 1.5 v 45 55 % rising/falling slew rate t r / t f (48m) measured between 0.8 v and 2.0 v 1.0 2.0 v/ns rising/falling slew rate t r / t f (12_48m) measured between 0.8 v and 2.0 v 1.0 2.0 v/ns cycle to cycle jitter t ccj measurement at 1.5 v ? 300 ps table 3. ac electrical specifications (continued) parameter symbol condition min max unit
SL28EB742 preliminary rev. 0.1 7 48m long term accuracy l acc measurement at 1.5 v ? 100 ppm 25m at 3.3 v duty cycle t dc measurement at 1.5 v 45 55 % rising/falling slew rate t r / t f measured between 0.8 v and 2.0 v 1.0 4.0 v/ns cycle to cycle jitter t ccj measurement at 1.5 v ? 300 ps long term accuracy l acc measured at 1.5 v ? 100 ppm 14.318m at 3.3 v duty cycle t dc measurement at 1.5 v 45 55 % rising/falling slew rate t r / t f measured between 0.8 v and 2.0 v 1.0 4.0 v/ns cycle to cycle jitter t ccj measurement at 1.5 v ? 500 ps long term accuracy l acc measurement at 1.5 v ? 100 ppm enable/disable and set-up clock stabilization from powerup t stable ?1.8ms stopclock set-up time t ss 10.0 ? ns table 3. ac electrical specifications (continued) parameter symbol condition min max unit
SL28EB742 8 preliminary rev. 0.1 table 4. thermal conditions parameter symbol condition min max unit temperature, storage t s non-functional ?65 150 c temperature, operating ambient, extended t a functional ?40 85 c temperature, operating ambient, commercial t a functional 0 70 c temperature, junction t j functional ? 150 c dissipation, junction to case ? jc jedec (jesd 51) ? 20 c/w dissipation, junction to ambient ? ja jedec (jesd 51) ? 60 c/w note: for multiple supplies, the voltage on any input or i/o pin cannot exceed the power pin during powerup. power supply sequencing is not required. table 5. absolute maximum limits parameter symbol condition min max unit main supply voltage v dd_3.3v functional ? 4.6 v input voltage v in relative to v ss ?0.5 4.6 v dc esd protection (human body model) esd hbm jedec (jesd 22 - a114) 2000 ? v flammability rating ul-94 ul (class) v?0 note: for multiple supplies, the voltage on any input or i/o pin cannot exceed the power pin during powerup. power supply sequencing is not required.
SL28EB742 preliminary rev. 0.1 9 2. functional description 2.1. powerdown (pd ) clarification the ckpwrgd/pd pin is a dual-function pin. during initial powerup, the pin functions as ckpwrgd. once ckpwrgd has been sampled high by the clock chip, the pin assumes pd functionality. the pd pin is an asynchronous active low input used to shut off all clocks cleanly before shutting off power to the device. this signal is synchronized internally to the device before powering down the clock synthesizer. pd is also an asynchronous input for powering up the system. when pd is asserted low, clocks are driv en to a low value and held before turning off the vcos and the crystal oscillator. 2.2. powerdown (pd ) assertion when pd is sampled low by two consecutive rising edges of cp uc, all single-ended outputs clocks will be held low on their next high-to-low tr ansition and differential clocks will be held lo w. when powerdown mo de is desired as the initial power on state, pd must be asserted low in less than 10 s after asserting ckpwrgd. . table 6. output driver status during cpu_stp and pcis_stp cpu_stp asserted pci_stp asserted clkreq asserted i 2 c oe disabled single-ended clocks stoppable running driven low running driven low non-stoppable running running running differential clocks stoppable clock driven high clo ck driven high clock driven low clock driven low clock driven low clock driven low clock driven low non-stoppable running running running table 7. output driver status all single-ended clocks a ll differential clocks w/o strap w/ strap clock clock# pd = 0 (powerdown) low hi-z low low
SL28EB742 10 preliminary rev. 0.1 2.3. powerdown (pd ) deassertion the powerup latency is less than 1.8 ms. this is the time from the deassertion of the pd pin or the ramping of the power supply until the time that stable clocks are generated from the clock ch ip. all differential outputs stopped in a three-state condition resulting from powerdown are driven high in less than 300 s of pd deassertion to a voltage greater than 200 mv. after the clock chip?s internal pll is powered up and locked, all outputs are enabled within a few clock cycles of each clock. figure 2 is an ex ample showing the relationship of clocks coming up. figure 1. powerdown assertion timing waveform figure 2. powerdown deassertion timing waveform pd usb, 48mhz dot96t dot96c srct 100mhz srcc 100mhz cput, 133mhz pci, 33 mhz ref cpuc, 133mhz dot96c pd cpuc, 133mhz cput, 133mhz srcc 100mhz usb, 48mhz dot96t srct 100mhz tstable <1.8 ms pci, 33mhz ref tdrive_pwrdn <300 ? s, >200 mv
SL28EB742 preliminary rev. 0.1 11 figure 3. ckpwrgd timing diagram fs_a, fs_b,fs_c ckpwrgd pwrgd_vrm vdd clock gen clock state clock outputs clock vco 0.2-0.3 ms delay state 0 state 2 state 3 wait for vtt_pwrgd# sample sels off off on on state 1 device is not affected, vtt_pwrgd is ignored
SL28EB742 12 preliminary rev. 0.1 2.4. cpu_stp assertion the cpu_stp signal is an active low input used for synchro nous stopping and starting the cpu output clocks while the rest of the clock generator co ntinues to function. when the cpu_stp pin is asserted, all cpu outputs that are set with the i 2 c configuration to be stoppable are stopped wit hin two to six cpu clock periods after being sampled by two rising edges of the internal cpuc cloc k. the final states of th e stopped cpu signals are cput = high and cpuc = low. 2.5. cpu_stp deassertion the deassertion of the cpu_stp signal causes all stopped cpu outputs to resume normal operation in a synchronous manner. no short or stretched clock puls es are produced when the cl ock resumes. the maximum latency from the deassertion to active outp uts is no more than two cpu clock cycles. figure 4. cpu_stp assertion waveform figure 5. cpu_stp deassertion waveform cpu_stp cput cpuc cpu_stp cput cpuc cput internal tdrive_cpu_stp, 10 ns>200 mv cpuc internal
SL28EB742 preliminary rev. 0.1 13 2.6. pci/ src_stp assertion the pci/ src_stp signal is an active low input used for synchr onously stopping and starting the pci outputs while the rest of the clock generator continues to function. the set-up ti me for capturing pci/ src_stp going low is 10 ns (t su ) (refer to figure 6). the pcif and src clocks are affected by the pci/src pin if their corresponding control bit in the i 2 c register is set to allow them to be free running. for src clocks assertion description, refer to the cpu_stp descriptions in sect ion 2.4 and section 2.5. figure 6. pci/ src_stp assertion waveform 2.7. pci/ src_stp deassertion the deassertion of the pci/ src_stp signal causes all pci and stoppable pcif to resume running in a synchronous manner within two pc i clock periods and after pci/ src_stp transitions to a high level. similarly, pci/ src_stp deassertion will cause stoppable src clocks to resume running. for an src clocks deassertion description, refe r to the cpu_stp description section 2.4 and section 2.5. figure 7. pci/ src_stp deassertion waveform
SL28EB742 14 preliminary rev. 0.1 3. test and measurement setup 3.1. single-ended clocks figure 8 shows the test load configurat ion for the single-ended output signals. figure 8. single-ended clocks single load configuration figure 9. single-ended output signals (for ac parameters measurement)
SL28EB742 preliminary rev. 0.1 15 3.2. differential clock signals figure 10 shows the test load configurat ion for the differential clock signals. figure 10. 0.7 v differential load configuration figure 11. differential measurement for differential output signals (for ac parameters measurement)
SL28EB742 16 preliminary rev. 0.1 figure 12. single-ended measurement for differential output signals (for ac parameters measurement)
SL28EB742 preliminary rev. 0.1 17 4. control registers 4.1. frequency select pin fs apply the appropriate logic levels to fs inputs before ckpwrgd assertion to achieve host clock frequency selection. when the clock chip samp led high on ckpwrgd and indicates that vtt voltage is stable, then fs input values are sampled. this process employs a one- shot functionality and, on ce the ckpwrgd samples a valid high, all other fs and ckpwrgd transi tions are ignored except in test mode. table 8. frequency select pin (fs) sel_sata fsc fsb fsa cpu src sata pci 0 0 0 0 100.00 100.00 100.00 33.33 0 0 0 1 100.00 100.00 100.00 33.33 0 0 1 0 83.33 100.00 100.00 33.33 0 0 1 1 83.33 100.00 100.00 33.33 0 1 0 0 133.33 100.00 100.00 33.33 0 1 0 1 133.33 100.00 100.00 33.33 0 1 1 0 166.67 100.00 100.00 33.33 0 1 1 1 166.67 100.00 100.00 33.33 1 0 0 0 100.00 100.00 100.00 33.33 1 0 0 1 100.00 100.00 100.00 33.33 1 0 1 0 83.33 100.00 100.00 33.33 1 0 1 1 83.33 100.00 100.00 33.33 1 1 0 0 133.33 100.00 100.00 33.33 1 1 0 1 133.33 100.00 100.00 33.33 1 1 1 0 166.67 100.00 100.00 33.33 1 1 1 1 166.67 100.00 100.00 33.33
SL28EB742 18 preliminary rev. 0.1 4.2. i 2 c interface to enhance the flexibility and functi on of the clock synthesizer, an i 2 c interface is provided. through the serial data interface, various device functions, such as indivi dual clock output buffers, are individually enabled or disabled. the registers associated with the i 2 c interface initialize to their default setting at powerup. the use of this interface is optional. clock device register changes are no rmally made at system initia lization, if any are required. 4.3. data protocol the clock i 2 c serial protocol accepts byte wr ite, byte read, block write, an d block read operations from the controller. for block write/read operation, access the by tes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any comp lete byte is transferred. for byte write and byte read operations, the system controller can access individually indexed bytes. the block write and block read protocol is outlined in ta ble 10, while table 11 outlines byte write and byte read protocol. the slave receiver address is 11010010 (d2h). table 9. command code definition bit description 7 0 = block read or block write operation, 1 = byte read or byte write operation. (6:0) byte offset for byte read or byte write operation. for block read or block wr ite operations, these bits should be '0000000'. table 10. block read and block write protocol block write protocol block read protocol bit description bit description 1 start 1 start 8:2 slave address?7 bits 8:2 slave address?7 bits 9write 9write 10 acknowledge from slave 10 acknowledge from slave 18:11 command code?8 bits 18:11 command code?8 bits 19 acknowledge from slave 19 acknowledge from slave 27:20 byte count?8 bits 20 repeat start 28 acknowledge from slave 27:21 slave address?7 bits 36:29 data byte 1?8 bits 28 read = 1 37 acknowledge from slave 29 acknowledge from slave 45:38 data byte 2?8 bits 37:30 byte count from slave?8 bits 46 acknowledge from slave 38 acknowledge .... data byte /slave acknowledges 46:39 data byte 1 from slave?8 bits .... data byte n?8 bits 47 acknowledge
SL28EB742 preliminary rev. 0.1 19 .... acknowledge from slave 55:48 data byte 2 from slave?8 bits .... stop 56 acknowledge .... data bytes from slave / acknowledge .... data byte n from slave?8 bits .... not acknowledge .... stop table 11. byte read and byte write protocol byte write protocol byte read protocol bit description bit description 1start 1start 8:2 slave address?7 bits 8:2 slave address?7 bits 9write 9write 10 acknowledge from slave 10 acknowledge from slave 18:11 command code?8 bits 18:11 command code?8 bits 19 acknowledge from slave 19 acknowledge from slave 27:20 data byte?8 bits 20 repeated start 28 acknowledge from slave 27:21 slave address?7 bits 29 stop 28 read 29 acknowledge from slave 37:30 data from slave?8 bits 38 not acknowledge 39 stop table 10. block read and block write protocol (continued) block write protocol block read protocol bit description bit description
SL28EB742 20 preliminary rev. 0.1 reset settings = 000x0xxx control register 0. byte 0 bitd7d6d5d4d3d2d1d0 name spread enable sel_sata fsc fsb fsa type r/w r/w r/w r r/w r r r bit name function 7:6 reserved 5 spread enable enable spread for cpu/src/pci outputs 0 = disable, 1 = ?0.5% 4 sel_sata see table 9 for sata/src selection. 3 reserved 2 fsc see table 9 for cpu frequency selection table. 1 fsb 0 fsa
SL28EB742 preliminary rev. 0.1 21 reset settings = 1111110 register 1. byte 1 bitd7d6d5d4d3d2d1d0 name dot96_oe sata/ src0_oe cpu2/ src6_oe src2 src1 type r/w r/w r/w r/w r/w r/w r/w r/w bit name function 7 dot96_oe output enable for dot96. 0 = output disabled, 1 = output enabled 6 sata/src0_oe output enable for sata/src0. 0 = output disabled, 1 = output enabled 5 cpu2/src6_oe output enable for cpu2/src6. 0 = output disabled, 1 = output enabled 4 src2 output enable for src2. 0 = output disabled, 1 = output enabled 3 src1 output enable for src1. 0 = output disabled, 1 = output enabled 2:0 reserved
SL28EB742 22 preliminary rev. 0.1 reset settings = 10111110 register 2. byte 2 bitd7d6d5d4d3d2d1d0 name 48m_oe 25m_oe ref_oe 12_48m_oe pci0_oe pcif_oe type r/w r/w r/w r/w r/w r/w r/w r/w bit name function 748m_oe output enable for diff2. 0: output disabled. 1: output enabled. 6 reserved 5 25m_oe output enable for 25m. 0 = output disabled, 1 = output enabled 4 ref_oe output enable for ref. 0 = output disabled, 1 = output enabled 3 12_48m_oe output enable for 12_48m. 0 = output disabled, 1 = output enabled 2 pci0_oe output enable for pci0. 0 = output disabled, 1 = output enabled 1 pcif_oe output enable for pcif. 0 = output disabled, 1 = output enabled 0 reserved
SL28EB742 preliminary rev. 0.1 23 reset settings = 1100000 register 3. byte 3 bitd7d6d5d4d3d2d1d0 name cpu1_oe cpu0_oe clkreq#_3 clkreq#_3 clkreq#_2 clkreq#_2 clkreq#_1 clkreq#_1 type r/w r/w r/w r/w r/w r/w r/w r/w bit name function 7cpu1_oe output enable for cpu1. 0 = output disabled, 1 = output enabled 6cpu0_oe output enable for cpu0. 0 = output disabled, 1 = output enabled 5 clkreq#_3 clock request for src2. 0 = not controlled, 1 = controlled 4 clkreq#_3 clock request for src6 (does not apply to cpu clock). 0 = not controlled, 1 = controlled 3 clkreq#_2 clock request for src2. 0 = not controlled, 1 = controlled 2 clkreq#_2 clock request for sata75m/src0. 0 = not controlled, 1 = controlled 1 clkreq#_1 clock request for src1. 0 = not controlled, 1 = controlled 0 clkreq#_1 clock request for sata75m/src0. 0 = not controlled, 1 = controlled
SL28EB742 24 preliminary rev. 0.1 reset settings = 00x0x000 register 4. byte 4 bitd7d6d5d4d3d2d1d0 name cpu1 12_48m cpu2 itp_en cpu0 type r/w r/w r r/w r r/w r/w r/w bit name function 7 reserved 6cpu1 cpu1 free run control. 0 = free running, 1 = stoppable 5 12_48m selectable 12_48m status. 0=48m, 1=12m 4cpu2 cpu2 free run control. 0 = free running, 1 = stoppable 3itp_en selectable cpue_itp/ src6 status. 0 = src6, 1 = cpu2 2 reserved 1cpu0 cpu0 free run control. 0 = free running, 1 = stoppable 0 reserved
SL28EB742 preliminary rev. 0.1 25 reset settings = 00010000 reset settings = 01010101 control register 5. byte 5 bitd7d6d5 d4 d3 d2 d1 d0 name sata75/src0 src6 src2 src1 type r/w r/w r/w r/w r/w r/w r/w r/w bit name function 7:5 reserved 4 sata75/src0 sata75/src0 free run control. 0 = free running, 1 = stoppable 3src6 src6 free run control. 0 = free running, 1 = stoppable 2src2 src2 free run control. 0 = free running, 1 = stoppable 1src1 src1 free run control. 0 = free running, 1 = stoppable 0 reserved control register 6. byte 6 bitd7d6d5d4d3d2d1d0 name cpu_amp src_amp dot96_amp sata_amp type r/w r/w r/w r/w r/w r/w r/w r/w bit name function 7:6 cpu_amp cpu amplitude adjustment. 00 = 70 0mv, 01 = 800 mv, 10 = 900 mv, 11 = 1000 mv 5:4 src_amp src amplitude adjustment. 00 = 70 0mv, 01 = 800 mv, 10 = 900 mv, 11 = 1000 mv 3:2 dot96_amp dot96 amplitude adjustment. 00 = 70 0mv, 01 = 800 mv, 10 = 900 mv, 11 = 1000 mv 1:0 sata_amp sata75/src0 amplitude adjustment. 00 = 70 0mv, 01 = 800 mv, 10 = 900 mv, 11 = 1000 mv
SL28EB742 26 preliminary rev. 0.1 reset settings = 00011000 control register 7. byte 7 bitd7d6d5d4d3d2d1d0 name rev code bit 3 rev code bit 2 rev code bit 1 rev code bit 0 vendor id bit 3 vendor id bit 2 vendor id bit 1 vendor id bit 0 type rrrrrrrr bit name function 7 rev code bit 3 revision code bit 3 6 rev code bit 2 revision code bit 2 5 rev code bit 1 revision code bit 1 4 rev code bit 0 revision code bit 0 3 vendor id bit 3 vendor id bit 3 2 vendor id bit 2 vendor id bit 2 1 vendor id bit 1 vendor id bit 1 0 vendor id bit 0 vendor id bit 0
SL28EB742 preliminary rev. 0.1 27 reset settings = 00001111 control register 8. byte 8 bitd7d6d5d4d3d2d1d0 name bc7 bc6 bc5 bc4 bc3 bc2 bc1 bc0 type r/w r/w r/w r/w r/w r/w r/w r/w bit name function 7 bc7 byte count register for block read operation. the default value for byte count is 15. in order to read beyond byte 15, the user should change the byte count limit to or beyond the byte th at is desired to be read. 6bc6 5bc5 4bc4 3bc3 2bc2 1bc1 0bc0
SL28EB742 28 preliminary rev. 0.1 reset settings = 11100001 control register 9. byte 9 bitd7d6d5d4d3d2d1d0 name src5 src4 src3 src5 src4 src3 pci0 pcif type r/w r/w r/w r/w r/w r/w r/w r/w bit name function 7src5 output enable for src5. 0 = output disabled, 1 = output enabled 6src4 output enable for src4. 0 = output disabled, 1 = output enabled 5src3 output enable for src3. 0 = output disabled, 1 = output enabled 4src5 src5 free run control. 0 = free running, 1 = stoppable 3src4 src4 free run control. 0 = free running, 1 = stoppable 2src3 src3 free run control. 0 = free running, 1 = stoppable 1pci0 pci0 free run control. 0 = free running, 1 = stoppable 0pcif pcif free run control. 0 = free running, 1 = stoppable
SL28EB742 preliminary rev. 0.1 29 reset settings = 00000000 reset settings = 10110111 control register 10. byte 10 bitd7d6d5d4d3d2d1d0 name type r/w r/w r/w r/w r/w r/w r/w r/w bit name function 7:0 reserved control register 11. byte 11 bitd7d6d5d4d3d2d1d0 name 14m_bit2 14m_bit1 14m_bit0 25m_bit2 25m_bit1 25m_bit0 12_48m_ bit2 12_48m_ bit0 type r/w r/w r/w r/w r/w r/w r/w r/w bit name function 7 14m_bit2 drive strength control - bit[2:0] normal mode default ?101? wireless friendly mode default to ?111? ? 614m_bit1 514m_bit0 425m_bit2 325m_bit1 225m_bit0 1 12_48m_bit2 0 12_48m_bit0
SL28EB742 30 preliminary rev. 0.1 reset settings = 10110100 control register 12. byte 12 bitd7d6d5d4d3d2d1 d0 name 48m_bit2 48m_bit1 48m_bit0 pci0_bit 2 pci0_bit1 pci0_bit0 12_48m_bit1 type r/w r/w r/w r/w r/w r/w r/w r/w bit name function 7 48m_bit2 drive strength control - bit[2:0] normal mode default ?101? wireless friendly mode default to ?111? ? 648m_bit1 548m_bit0 4pci0_bit2 3pci0_bit1 2pci0_bit0 1 reserved 0 12_48m_bit1
SL28EB742 preliminary rev. 0.1 31 reset settings = 10100000 control register 13. byte 13 bitd7d6d5d4d3d2d1 d0 name pcif_bit2 pcif_bit1 pcif_b it0 wireless friendly mode type r/w r/w r/w r/w r/w r/w r/w r/w bit name function 7 pcif_bit2 drive strength control?bi t[2:0] normal mode default 101 wireless friendly mode default to ?111? ? 6pcif_bit1 5pcif_bit0 4:1 reserved 0 wireless friendly mode wireless friendly mode. 0 = disabled, default all single-ended clocks slew rate config bits to 101 1 = enabled, default all single-ended cloc ks slew rate config bits to 111
SL28EB742 32 preliminary rev. 0.1 reset settings = 10101000 control register 14. byte 14 bit d7 d6 d5 d4d3d2d1 d0 name otp_4 otp_3 otp_2 otp_1 otp_0 type r/w r/w r/w r/w r/w r/w r/w r/w bit name function 7:5 reserved 4 otp_4 otp_id. identification for programmed device 3 otp_3 2 otp_2 1 otp_1 0 otp_0
SL28EB742 preliminary rev. 0.1 33 5. pin descriptions: 56-pin qfn SL28EB742 pcif/itp_en 2 clkreq3 2 12m_48m/sel 12_48 1 vdd_48 gnd_48 48m/fsa 2 notes: 1. internal 100 kohm pull-up. 2. internal 100 kohm pull-down. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 42 41 40 39 38 37 36 35 34 33 32 31 30 29 56 55 54 53 52 51 50 49 48 47 46 45 44 43 gnd_48 dot96 dot96 fsb 2 gnd_sata sata/src0 sata/src0 vdd_sata src1 src1 src2 src2 src3 src3 gnd_src vdd_src src4 src4 src5 src5 vss_src vdd_src xin/clkin xout pci/src_stp 1 cpu_stp 1 sdata sclk gnd_cpu cpu0 cpu0 vdd_cpu cpu1 cpu1 cpu2/src6 cpu2/src6 vdd_pci gnd_pci pci0/sel_sata 2 clkreq2 2 clkreq1 2 gnd_25 25m / fsc 2 vdd_25 ckpwrgd/pd vdd_ref vdd_ref ref gnd_ref gnd_ref
SL28EB742 34 preliminary rev. 0.1 table 12. 56-qfn pin definitions pin # name type description 1 pcif/itp_en i/o, se, pd 33 mhz free running clock output/3.3 v lvttl input to enable src6 or cpu2_itp (sampled on the ckpwrgd assertion). 0 = src6, 1 = cpu2 2clkreq3 i, pd active low input pin enables src3 (internal 100 k ? pull-down). 3 12_48m / sel12_48 i/o, se pu 12/48 mhz clock output/3.3 v-tolerance input for 12 mhz or 48 mhz selection (sampled at ckpwrg d assertion) (internal 100 k ? pull-up). 0=48m, 1=12m 4 vdd_48 pwr 3.3 v power supply 5 48m/fsa i/o pd fixed 48 mhz clock output/3.3 v-to lerant input for cpu frequency selection (internal 100 k ? pull-down). 6 gnd_48 gnd ground. 7 gnd_48 gnd ground. 8 dot96 o, dif fixed true 96 mhz clock output. 9dot96 o, dif fixed complement 96 mhz clock output. 10 fsb i, pd 3.3 v-tolerant input for cpu frequency selection (internal 100 k ? pull- down). 11 gnd_sata gnd ground. 12 sata/src0 o, dif 100 mhz true differential serial reference clock. 13 sata/src0 o, dif 100 mhz complement differ ential serial reference clock. 14 vdd_sata pwr 3.3 v power supply. 15 src1 o, dif 100 mhz true differential serial reference clock. 16 src1 o, dif 100 mhz complement differ ential serial reference clock. 17 src2 o, dif 100 mhz true differential serial reference clock. 18 src2 o, dif 100 mhz complement differ ential serial reference clock. 19 src3 o, dif 100 mhz true differential serial reference clock. 20 src3 o, dif 100 mhz complement differ ential serial reference clock. 21 gnd_src gnd ground. 22 vdd_src pwr 3.3 v power supply. 23 src4 o, dif 100 mhz complement differ ential serial reference clock. 24 src4 o, dif 100 mhz true differential serial reference clock. 25 src5 o, dif 100 mhz complement differ ential serial reference clock.
SL28EB742 preliminary rev. 0.1 35 26 src5 o, dif 100 mhz true differential serial reference clock. 27 gnd_src gnd ground. 28 vdd_src pwr 3.3 v power supply. 29 src6 /cpu2_itp o, dif selectable complementary diff erential cpu or src clock output. itp_en = 0 @ ckpwrgd assertion = src6 itp_en = 1 @ ckpwrgd assertion = cpu2 30 src6/cpu2_itp o, dif selectable true differential cpu or src clock output. itp_en = 0 @ ckpwrgd assertion = src6 itp_en = 1 @ ckpwrgd assertion = cpu2 31 cpu1 o, dif complement differential cpu clock output. 32 cpu1 o, dif true differential cpu clock output. 33 vdd_cpu pwr 3.3 v power supply. 34 cpu0 o, dif complement differential cpu clock output. 35 cpu0 o, dif true differential cpu clock output. 36 gnd_cpu gnd ground. 37 sclk i i 2 c compatible sclock. 38 sdata i/o i 2 c compatible sdata. 39 cpu_stp i, pu 3.3 v-tolerant input for stopping cpu outputs (internal 100 k ? pull-up). 40 pci/ src_stp i, pu 3.3 v-tolerant input for stopping pci and src outputs (internal 100 k ? pull-up). 41 xout o 14.318 mhz crystal output, floa t xout if using only clkin (clock input). 42 xin/clkin i 14.318 mhz crystal input or 3.3 v, 14.318 mhz clock input 43 gnd_ref gnd ground for ref clock. 44 gnd_ref gnd ground for ref clock. 45 ref o 14.318 mhz reference output clock. 46 vdd_ref pwr 3.3 v power supply for ref clock. 47 vdd_ref pwr 3.3 v power supply for ref clock. 48 ckpwrgd/pd i 3.3 v lvttl input. this pin is a level sensitive strobe used to deter- mine when latch inputs are valid and are ready to be sampled. after latch inputs are latched, this pin becomes a real-time active low input for asserting power down (pd ); asynchronous active low input pin that stops all outputs except free running. table 12. 56-qfn pin definitions (continued) pin # name type description
SL28EB742 36 preliminary rev. 0.1 49 vdd_25 pwr 3.3 v power supply. 50 25m/fsc i/o, pd fixed 25 mhz clock output /3.3 v-tolerant input for cpu frequency selection (internal 100 k ? pull-up). 51 gnd_25 gnd ground. 52 clkreq1 i, pd active low input pin enables src1 (internal 100 k ? pull-up). 53 clkreq2 i, pd active low input pin enables src2 (internal 100 k ? pull-up). 54 pci0/sel_sata i/o, se pd 33 mhz clock output/3.3 v lvttl input to enable 100 mhz sata (internal 100 k ? pull-up). 0 = sata/src0 = src0 1 = sata/src0 = sata 55 gnd_pci gnd ground. 56 vdd_pci pwr 3.3 v power supply. table 12. 56-qfn pin definitions (continued) pin # name type description
SL28EB742 preliminary rev. 0.1 37 6. ordering guide part number package type product flow lead-free SL28EB742alc 56-pin qfn commercial, 0 to 70 ? c SL28EB742alct 56-pin qfn tape and reel commercial, 0 to 70 ? c SL28EB742ali 56-pin qfn extended, ?40 to 85 ? c SL28EB742alit 56-pin qfn tape and reel extended, ?40 to 85 ? c
SL28EB742 38 preliminary rev. 0.1 7. package outline figure 13 illustrates the packag e details for the SL28EB742. table 13 lists the values for the dimensions shown in the illustration. figure 13. 56-lead qfn package ?
SL28EB742 preliminary rev. 0.1 39 table 13. package diagram dimensions symbol millimeters min nom max a 0.70 0.75 0.80 a1 0.00 0.02 0.05 a3 0.20 ref b 0.18 0.25 0.30 d 8.00 bsc d2 5.80 5.90 6.00 e 0.50 bsc e 8.00 bsc e2 5.80 5.90 6.00 l 0.30 0.40 0.50 aaa 0.10 bbb 0.10 ccc 0.10 ddd 0.10 eee 0.08 notes: 1. all dimensions shown are in millimeters (mm) unless otherwise noted. 2. dimensioning and tolerancing per ansi y14.5m-1994. 3. recommended card reflow profile is per the jedec/ipc j-std-020 specification for small body components. 4. this drawing conforms to the jedec solid state outline mo-220.
SL28EB742 40 preliminary rev. 0.1 c ontact i nformation silicon laboratories inc. 400 west cesar chavez austin, tx 78701 tel: 1+(512) 416-8500 fax: 1+(512) 416-9669 toll free: 1+(877) 444-3032 please visit the silicon labs technical support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. silicon laboratories and silicon labs are trademarks of silicon laboratories inc. other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders. the information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. silicon laboratories assumes no responsibility for errors and omissions, and disclaims responsib ility for any consequences resu lting from the use of information included herein. a dditionally, silicon laboratorie s assumes no responsibility for the functioning of und escribed features or parameters. silicon laboratories reserves the right to make changes without further notice . silicon laboratories makes no wa rranty, rep- resentation or guarantee regarding the suitability of its products for any particular purpose, nor does silicon laboratories as sume any liability arising out of the application or use of any product or circuit, and s pecifically disclaims any an d all liability, including wi thout limitation conse- quential or incidental damages. silicon laborat ories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the silicon laboratories product could create a s ituation where per- sonal injury or death may occur. should buyer purchase or us e silicon laboratories products for any such unintended or unauthor ized ap- plication, buyer shall indemnify and hold silicon laboratories harmless against all claims and damages.


▲Up To Search▲   

 
Price & Availability of SL28EB742

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X